Hedging Strategies with Treasury Bond Futures

Finance 7523. Spring 1999
Dr. Steven C. Mann
M.J. Neeley School of Business
Texas Christian University

Mann web page

The Chicago Board of Trade

S.Mann, 1999
T-Bond Futures

- written on $100,000 face value U.S. Treasury bonds
- contract allows delivery of any bonds that are meet delivery criteria (maturity > 15 years)
- futures prices quoted in points, as a percentage of par ($100,000)
- minimum price increments of 1/32 point
- e.g. 1 point = $1000, 1/32 = $31.25
- minimum movement = $31.25
T-bond futures price quotes

- quote of 92-00 = $92,000 futures price (92% of $100k)
- if futures declines by 22/32, (contract is down 22 ticks), price declines by ($31.25) x (-22) = -$687.50, and futures price is 91-10 ($91,312.50)

- range of bonds eligible for delivery
- bonds with at least 15 year maturity
- if callable - call after 15 years

S.Mann, 1999
Delivery for T-bond futures

- Short (seller) can deliver any of eligible bonds
- Eligible bonds have wide variation in coupon and maturity, thus wide variation in current price
- Short can be expected to deliver "junk" - the "cheapest -to-deliver" bonds
- Contract reflects cheapest to deliver bond
- CBOT conversion factor system used to compare bond values.

Conversion factors: www.cbot.com
Conversion factors and Futures Prices

- Conversion factors represent the price at which a given bond will yield 8%.
- Futures contract priced based on value of the "cheapest-to-deliver" bond.
- Futures price times conversion factor gives "cash equivalent price".
 - For 8% bond, conv. factor about 1.
 - Coupon < 8%, factor is less than 1.
 - Coupon > 8%, factor is more than 1.
Maturity rounded down to nearest 3 months for calculation

Consider 8.5% T-bond with maturity 22 years, 2 months. Conversion factor prices at 8%:

Bond value defined to be:

\[\sum_{t=1}^{44} \frac{4.25}{(1 + .04)^t} + \frac{100}{(1 + .04)^{44}} = 105.1372 \]

So conversion factor is 1.0514 for the bond.
Cheapest to deliver

Short invoice is: (short receives):

\((\text{Futures price } \times \text{ bond conversion factor}) + \text{ bond accrued interest}\)

cost of purchasing bond to deliver is:

bond price + accrued interest

so, net gain to short from delivering is:

\(\text{Futures price } \times \text{ conversion factor} - \text{ bond price}\)
Example: Cheapest to deliver

<table>
<thead>
<tr>
<th>Bond</th>
<th>Price</th>
<th>Conversion factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>94.25</td>
<td>1.0820</td>
</tr>
<tr>
<td>2</td>
<td>126.00</td>
<td>1.4245</td>
</tr>
<tr>
<td>3</td>
<td>142.125</td>
<td>1.5938</td>
</tr>
</tbody>
</table>

Current futures price is: 94 - 2 (94.0625)

Gain to short from delivering is:

<table>
<thead>
<tr>
<th>Bond</th>
<th>Gain from delivery</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>94.0625 x 1.0820 - 94.25 = 7.53</td>
</tr>
<tr>
<td>2</td>
<td>94.0625 x 1.4245 - 126.00 = 7.99</td>
</tr>
<tr>
<td>3</td>
<td>94.0625 x 1.5938 - 142.125 = 7.79</td>
</tr>
</tbody>
</table>

Bond 2 is the cheapest to deliver.
Scenario: Pension Fund Manager will need to liquidate bonds in 40 days in order to make payment of $5 million to beneficiaries.

Risk Profile:

Value of Bonds to be sold

rates

S. Mann, 1999
Duration

Define $D_M = \frac{\text{duration}}{1+y}$ (annual coupon)

= $\frac{\text{duration}}{1+y/2}$ (semi-annual coupon)

(modified duration)

approximate % change in Price:

$$\Delta P/P = - D_M \times \Delta y$$

example:

$D_M = 4.5$

$\Delta y = + 30 \text{ bp}$

expected % price change = $-4.5 \times (0.0030) = -1.35\%$

linear approximation. Convexity matters.

S. Mann, 1999
Price Value of Basis Point (PVBP)

PVBP = \(D_M \times \text{Portfolio Value} \times 0.0001 \)

Example: price = $100,000; \(D_M = 4.62 \)

PVBP = \((4.62) \times 100,000 \times 0.0001\) = $46.20

PVBP for T-Bond futures:

PVBP(Bond futures) = \(\frac{\text{PVBP(Cheapest to deliver)}}{\text{Conversion factor}} \)

Example:

cheapest to deliver price = $126.00
cheapest to deliver \(D_M \) = 10.00
conversion factor = 1.4245

PVBP(futures) = \((10.0 \times 126,000 \times 0.0001) / 1.4245\)

= $88.54

S. Mann, 1999
T-Bond futures PVBP example

Assume Cheapest to deliver is 8.75% of May 15/2020

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>par value</td>
<td>100,000</td>
<td>Macauley duration</td>
<td>11.63</td>
</tr>
<tr>
<td>settlement date</td>
<td>11/23/97</td>
<td>D_m</td>
<td>11.28</td>
</tr>
<tr>
<td>bond maturity</td>
<td>5/15/20</td>
<td>PVBP (spot)</td>
<td>148.47</td>
</tr>
<tr>
<td>bond coupon</td>
<td>8.75%</td>
<td>maturity (years)</td>
<td>22.48</td>
</tr>
<tr>
<td>bond yield</td>
<td>6.14%</td>
<td>conversion factor</td>
<td>1.0777</td>
</tr>
<tr>
<td>coupon frequency</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>bond fair value</td>
<td>131,588</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PVBP (futures)</td>
<td>137.76</td>
</tr>
</tbody>
</table>

PVBP(futures) = \(\frac{D_m \times \text{spot price} \times 0.0001}{\text{Conversion factor}} \)

Conversion factor from CBOT

CBOT conversion factors

S.Mann, 1999
Example: Change portfolio duration

Manager expects decline in bond yields: ⇒ increase duration.
$100 million indexed bond portfolio
Current portfolio $D_m = 4.39$; target $= 9.6$

Steps: 1. Find PVBP for portfolio:
$$4.39 \times \$100,000,000 \times .0001 = \$43,900.00$$
2. Find PVBP for target portfolio:
$$9.60 \times \$100,000,000 \times .0001 = \$96,000.00$$
3. Use futures PVBP (prior slide) to find futures position needed to extend duration to target
$$(\$96,000 - \$43,900)/\$137.76 = 378.2 \text{ contracts}$$

Margin requirement: CBOT margins
Synthetic Duration extension

<table>
<thead>
<tr>
<th>Portfolio D_M</th>
<th>4.39</th>
<th>PVBP (futures)</th>
<th>137.76</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portfolio Value</td>
<td>100,000,000</td>
<td>Portfolio PVBP</td>
<td>43,900</td>
</tr>
<tr>
<td></td>
<td></td>
<td>futures position</td>
<td>378</td>
</tr>
<tr>
<td>Target D_M</td>
<td>9.60</td>
<td>Target PVBP</td>
<td>96,000</td>
</tr>
</tbody>
</table>

Predicted values if yield:

<table>
<thead>
<tr>
<th></th>
<th>down 10 bp</th>
<th>up 10 bp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spot portfolio</td>
<td>439,000</td>
<td>(439,000)</td>
</tr>
<tr>
<td>Futures</td>
<td>520,733</td>
<td>(520,733)</td>
</tr>
<tr>
<td>combined</td>
<td>959,733</td>
<td>(959,733)</td>
</tr>
<tr>
<td>target (D_M = 9.6)</td>
<td>960,000</td>
<td>(960,000)</td>
</tr>
</tbody>
</table>

This ignores convexity

S.Mann, 1999
Example: Asset Allocation

$500 million portfolio: target allocation is 60% stock/40% bonds
Rise in equity leaves portfolio 80% stock ($400 m); 20% bonds.
Futures to synthetically allocate assets, trade actual assets later.
Data:
Stock beta = 1.0
S&P 500 Futures contract = $900,000.
Bond portfolio $D_M = 4.39 (target)
Bond futures PVBP = $137.76

Steps: 1. Find PVBP of additional bond exposure desired:
 PVBP = $100m x 4.39 x .0001 = $43,900
2. Determine number of bond futures to buy:
 $43,900/137.76 = 319 contracts.
3. Determine stock index futures to sell:
 $100,000,000/$900,000 = 111 contracts.

S.Mann, 1999